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ON THE STABILITY OF A NONAUTONOMOUS HAMILTONIAN SYSTEM 

UNDER SECOND-ORDER RESONANCE* 

A. I'. IVANOV and A. G. SOKOL'SKII 

The problem of the stability of the equilibrium position of a nonautonomous 2n- 
periodic Hamiltonian system with two degrees of freedom, in a nonlinear setting, is 
examined in the case when the multipliers of the linearized system are equal and 
correspond to a combination-type parametric resonance. The cases of prime and 
nonprime elementary divisors of the linear system's characteristic matrix are 
studied. Stability in a finite approximation, and formal stability or instability 
of the equilibrium position are proved, depending on the coefficients of the 
Hamilton function. Computation formulas are quoted. 

1. We consider a nonautonomous Hamiltonian system with two degrees of freedom 

dqk aH dPh_ 
-=-( 

dt ok 
xzz-~ (k=l, 2) 11.1) 

Let the Hamilton function fl= H(qk,~k, 1) be continuous and &c-periodic in t; let it be 
analytic in qk and pk in a neighborhood Of the origin Of the phase space of qk and pk, the 
origin beiny an equilibrium position of system (1.1); consequently, it is representable as 
the Taylor series 

We write the linearized system of equations with Hamiltonian H, 

dxldt = Jh (t)x, x = (h Q2, Pl> PAT, J=11_‘;, ;il, h(t)=ll$l!, h(t+Zn)=h(t) (1.3) 

where 0, and E, are the null and the unit matrices of appropriate orders. By X(t)we denote 
the fundamental matrix of solutions of equation system (1.3), satisfying the initial condi- 
tions X (0) =E,. As is well known /l-33/, the characteristic equation of system (1.3) 

det I/X(&) - pE, /I = 0, is reflexive 

p4 - a,# -t a,pz - a,p + 1 = 0 (1.4) 

(a1 is the trace of matrix X(h), a2 is the sum of all its principal second-order minors) 
and together with the root p of Eq. (1.4) has the root l/p. Consequently /l-33/, for the 
stability of systems (1.3) and (1.1) it is necessary that IpjJ = 1 (i = 1,...,4). Henceforth 
we assume the fulfillment of these conditions. If among the roots of Eq. (1.4) there are no 
multiple ones, then system (1.3) is stable, but the stability of system (1.1) still does not 
follow from this. 

The problem of the stability of the complete system in this case of unequal multipliers 
pj has been solved in a number of papers (see /3/). Assertions on the Liapunov-instability 

or on formal stability have been obtained as functions of the coefficients of forms H,,B,,H,,... 
(only the case cf a simultaneous fulfillment of several resonance relations has remained un- 
analyzed). The case of equal multipliers is interesting from the theoretical viewpoint be- 
cause the complete system (1.1) can be stable even if the linearized system (1.3) is unstable. 
In the majority of applied problems the case of multiple multipliers corresponds to the 
boundaries of the stability domain of the linear system and, therefore, the problem being 
studied here is closely related with the question on the "security" of the boundaries of the 
stability domain in parameter space /4/. We note another connection of the problem being ex- 
amined with the analogous problem for autonomous systems. We nunber the roots of Eq. (1.4) 
in such a way that Imp~>O,~k+~ =Fk (the overbar denotes the complex conjugate, and the 
necessary stability condition lpll =l is fulfilled), The ccndition lpll _~ i imposed on the 
multipliers is equivalent to all the characteristic indices j&(pk = e~p(tn&~)) being pure 
imaginary. Then the multipliers of the nonautonomous system can be equal only in one of three 
cases: a) h, =+-& (mod i) when P1 = p,+ &I; b) oh, #O, 21, = U (tnod 1) when &#&fl,P, -+=fl; 
c) Zh, = 0, 2h, = 0 (mod i) whenp,=P~=~l~pr-Pz=;-+l. For autonomous systems in which the 
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quantities b, and b play the role of the frequencies of the linear system, case a) corres- 
ponds to the case of equal frequencies (second-order resonance) /5-7/, case b) to the case 
of zero frequency (first-order resonance) /8/, and case c) to the case of two zero frequenc- 
ies (double first-crder resonance). 

The aim of the present paper is to solve the stability problem for the trivial equili- 
briumpositionof system (1.1) in the case when the multipliers of system (1.3) are equal and 
the characteristic indices satisfy the relation h,= + h,(modl). In the notation adopted 
this signifies that PI = pz= pP+z 1, i.e., the coefficient of Eq. (1.4) satisfy the 
relation a2 = 2 a12/4 (a,# 5 4) and the numbers &and h, are determined from them by the 
formulas 

1 
h,=* zarccos + + kr, hz=)&arccos+ +/i,, (al= 4 Rep) 

where k,,k, are arbitrary integers. As will be seen from what follows, the answer to the 
stability question is independent of numbers kl and k,. Therefore, we can take h,= ah,=& 
where O<h<l,h#'l,,6==*1. In actual mechanical problems the case being examined cor- 
responds to the boundary of the domain of combined-type parametric resonance. 

2. As for the autonomous systems, depending on the elements of matrix X(&r), it is 
necessary in the problem being examined to investigate separately the cases of prime and 
nonprime elementary divisors of the linearized system's characteristic matrix. At first we 
consider the case of nonprime elementary divisors. We note that for applications this case 
is more important than the case of prime elementary divisors, considered in Sect.3, since 
for the realization of the latter we need, besides the fulfillment of the resonance conditions, 
also the fulfillment of certain (equality-type) conditions imposed on the elements of matrix 
x (2x). 

Let us normalize the linear system (1.3). According to Liapunov's reducibility theorem 
/l/ system (1.3) can be reduced, by means of a nonsingular linear substitution, to a system 
with constant coefficients. Many papers (see the bibliography in /2,3/j have dealt with 
solving the problem of normalizing linear canonic systems. Below we describe a ccnstructive 
method for reducing system (1.3) to normal form, analogous to the method suggested by 
Markeev /3/ for the case of unequal multipliers. 

Theorem 2.1. A real symplectic matrix N (t), continuously differentiable and %-period- 
ic in t, exists such that the substitution 

x = N (t)x' (x' = (Ql'l Q2', PI', Pz'Y) (2.1) 

leads the quadratic part Hz cf the Hamiltonian of system (1.1) to the normal form (S = *I) 

Hs’ = ‘/,8 (a” + qa’*) + h (e’pz - qz’pl’) (2.2) 

coinciding with the normal form of the autonomous problem /5,6/. 
We prove the theorem by constructing the matrix N (t). We seek it in the form /3/ 

where 

N (t) = X (t)Ae-W (2.3) 

(2.4) 

and we select the constant matrix A in such a way that transformation (2.1) is real (i.e., 
N (t) = N (t)), univalent, canonic and 2n -periodic in t. We note that transformation (2.1) 

leads system (1.3) to the form 

.$+Jh’xr, h’= s II II 
independently of the form of the nonsigular matrix A. Since the matrices X (09 e-s*, C are 
symplectic, fcr transformation (2.1) to be canonic and univalent the matrix A too must be 
symplectic, i.e. 

ATJA = J (2.5) 

From the requirement that matrix N (t) be 2n-periodic in t follows the condition 

X(2rc)A = Aelas, (2.6) 
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Consequently, in the case of nonprime elementary divisors being considered the matrix $XB 

is the symplectic normal Jordan form of matrix X(2m), while the eigenvectors and adjoined 
vectors of matrix X(2n), normalized by condition (2.5), are the columns of the matrix A 
reducing matrix X(2n)to normal form. Therefore, we set A = LD, where the nonsingular matrix 
L is some solution of Eqs. (2.6) and the matrix Ddeals with the satisfaction of condition 

(2.5) of norming the eigenvectors and the adjoined vectors. Let the columns lj of matrix L 
satisfy the relations 

X (2s)l1 = pl1, x (2n)l, = PI, + 2npl1, x (2n)l, = ?I, - 2np4, x (2n)l, = Cl, (2.7) 

Then, having chosen the vectors lj such that I, = 6,, I, - -6, and having set 

D’ o2 
D= o, D” 9 II II D'= $ ;f , D”= II I/ 

we find that the matrix satisfies Eq. (2.6) independently of dl,d,,li, 1, (from (2.7)), and 
matrix N (t) is real. Thus, to satisfy the last condition (2.5) it remains only to select di 
and d, from the 11 and 1, from (2.7) for this, having rewritten condition (2.5) as A=JA = 
D%=JLD = D=FD = J, we investigate at first the properties of the matrix F = II fjn II, fjn = (ljy 
Jl,). Since (U,JV)= -(JU,V) is valid for any four-vectors U and V , the matrix F is 
skew-symmetric. Further, as when PlZ PZY from Eqs. (2.7) and the choice of l3 and I, it fol- 

lows that f12 = f34 = 0, fl.9 = J*la, f23 = -723 (f23 is a pure imaginary number). 
Let us show that fr4 = --6 (lI,Jjl) F 0. Let M, be the Euclidean space spanned by vectors 

lj . We consider its three-dimensional subspace h'Z, orthogonal to vector Jl,. It is in- 
variant relative to a linear transformation by matrix X (2~). Indeed, if g= nl, (i.e., 

(g, J14) = 0), then 
(X (Zn)g, Jl,) = (X (2n)g, JX (24)&i = (g, Jl,)/, = 0 

The two-dimensional linear subspace M, spanned by vectors I, and I, also is invariant 

and is contained in M, (matrix X (2n)is nonsingular). Consequently /9/, M, necessarily 

contains one more eigenvector of matrix X(2n), i.e., the vector 11, but this signifies 

that fu = (ll,Jl,)=O. Hence we obtain as well that ft4 = fz4 (f2, is a real number). 

Thus, we have established the form of matrix F, and, hence, of matrix ATJ’A. Equating 

the elements of the latter matrix to the elements of matrix J,we obtain the norming relations 

d, = di = 1 (II, J&I-‘,‘: d, = --6, = -I/.$ (I*. J&)d13, 6 ~~~ sign (II, Jr,) 

Finally, in the system with Hamiltonian (2.2) we make one more canonic transformation ph.’ =qk”, 
pkr = 6p,” with valence 6. Gathering up the results obtained, for the normalizing matrix 

N (t) now having valence 6 and leading function II, to form (2.2) wherein 6-z 1, we finally 
obtain the expression 

(2.8) 

where rk and sk are the real and imaginary parts of the vectors A, ti,l,: A, ; d,ll i_ &I, which 
are the first columns of matrix A. This completes the proof of Theorem 2.1. 

We note that the linear system with Hamiltonian (2.2) is unstable since the general solu- 

tion contains a growing term cf the form tsinht. However, as we shall subsequently see, from 
this there still does not follow the instability of the complete system. 

Further in this section we reckon that in the system with Hamiltonian (1.2) the linear 
normalization (2.1) with matrix (2.8) has already been effected and that the Hamiltonian's 
quadratic part has the form (2.2) wherein 6 = 1. The notation for the variables is left as 

before (without primes). 
By the Deprit- Hori method we now make a nonlinear normalization (*) 

(Qh-. Pk) --f (Qh.9 Ph.) (k = 1, 2) (2.9) 

in the complete system, such that the new Hamiltonian function 

K = K, + . . + K, i- . (2.10) 

is of a simpler form. It is more convenient to make the nonlinear normalization in complex 

variables connected with the real variables by the formulas 

&I*, q?*. PI*, p2*r -2 c ((II> 92) Pl> zd= 
(2.11) 

. ___- _~_ .-- __--_----I--_ .____ 
*) Markeev, A.P. and Sokol'skii, A.G., Some computational algorithms for normalizing 

Hamiltonian systems. Preprint Inst. Prikl. Mat. Akad. Nauk SSSR, No.31, 1976. 
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where matrix C has been defined in (2.4) and 6 = 1. In the complex variables (below, the 

asterisk denotes that the corresponding function has been written in complex variables) 

Hz* = ih (41*&Q* + %*P**) + 42*n*7 while the coefficients of forms H,*satisfy the relations 

(2.12) 

Substitution (2.9) is close to being an identical substitution. Therefore, K, = II, (K,* = 
II,*). The coefficients of form K,* are related with those of the corresponding form s7n* 
of the generating function of the Deprit-Hori method and with those of form G,*, uniquely 
determined by the already-known forms KS*,..., K*,_,, S3*,...,S*m-lrH,*,...,H~-,, H,*, by dif- 

ferential equations of the following type 

We can deal with the function kLPrll, (t) in such a way that Hamiltonian (2.10) is maximally 

simplified and that only a 2n-periodic solution of Eq. (2.13) relative to S&L,~,(~) exists. 
If the number r%,YMl? is not an integer or if v2 and pi do not simultaneously equal zero, 
then we can set kzvjllpr := 0. If I;,~+,~~ = N (an integer) and v2 = ~1 = 0, then in Km* it is 
impossible to annihilate the term with coefficient k&.,)r,pt, but we can set 

Here the numbers (2.14) pcssess property (2.12). We note that the thus-chosen coefficients 
of the new Hamilton function are invariant relative to the substitution h+h + integer, and 

it is precisely because of this (as was noted in Sect.1) we can assume O<h<l. 
In order to eliminate the explicit dependence of the coefficients on time we make one 

more canonic transformation (&* Pk*)-+(&**, Ph.**)by using the generating function 
(Q,*p,** $- Q2*P,**) exp (-iht). Then', finally, 

T= 
in the complex variables the Hamiltonian takes 

the normal form (the notation has been left the same for the variables) 

K* = Qz*I’l* + 2 x,,,~~,~~Q~*~‘Q~*~~P~*~‘~~*~* + KG,, + . . . (2.15) 

Here the summation is taken over nonnegative indices ~1, yz, PI, cl2 such that 3 <vi + v2 + PLY + 
pz < m, ~2 + prz # 0, and r%,y.GIpLI= iv’ (an integer) . 

Restricting, as in the autonomous problem /5,6/, the analysis to terns of upto forth 

order (m = 3,4), we come to the necessity of considering three essentially different cases: 

1) 3h#n-, 4h#N; 2) 3h k= N (because of the condition O<h< 1 it is sufficient to 
consider only N = 1,2); 3) 41 = N (here N = 1,2,3). In the case 1) the normal form of the 
Hamiltonian in real variables takes the form 

K ;r K(O) + KU) (2.16) 

K(O) = f (Q1” + QI’) -+ A (PI” + Pa’)’ , Kc’)= (Pz + P,2) [B (QIP, - Q,I’,) + C (Q2 + QZ)] -t Kg + . . (2 - 17) 
and is analogous to the normal form in the autonomous problem /5/. Here the real coefficient 

A t needed subsequently, is expressed in terms of the coefficients of Hamiltonian (1.2) 

(written after making the linear normalization (2.1)) by the formula 

i 
A = T;-x200z, 

h;;,, = 4 (3hmo + how + 3hooot) 

(2.18) 

L I W) 
F (r, f) = @’ - I(t) + 1-_ 1, I(z)= (f(t)P’dt 

0 
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h&+= $ [(- haosa + hoala) + i (hoozl - hoaos)l 

h&o, = -& [(Shoosa + ho,,,) + i (- ho”?1 - &,,,)I 
2Vz 

h* em=&Nh 1020 -hem - hou) + i (- hl -ho + hodI 

h&lo = $-I@ loso - booa + km) + i (-hell -+ ham - holad 

hFlol = A[(- hloza - hooz) + i (holzo + halos)1 
1/z 

Theorem 2.2. If A > 0 in the normal form (2.16), (2.17), then the equilibrium posi- 
tion is formally stable. If A < 0, Liapunov-instability obtains. 

To prove the theorem's first assertion we note that the above-described normalizing 
transformation (2.9) can be carried out in any order. Then the system admits of a formal 
(because of a possible divergence of transformation (2.9)) integral K = const defined by 
formula (2.16) in which K(udoes not depend on time explicitly. Since function K is positive 

definite when A>O, by the definition in /lo/ the equilibrium position of the normalized 

(and, consequently, the original) system is formally stable. The instability is proved in 
the same way as in the autonomous problem /5/. We note that when ~200~ = 0 we have A = 0 and 
the stability question is resolved by higher-order terms by considering the expressions 

%""3 v13 + P3313 etc., in the normal form (2.16). The theorem has been proved. 

Cases 2) a& 3) are particular only in the nonautonomous problem. In case 2) the normal 

form in real variables takes form (2.16), where now 

K(O)= -+(Qr'+ Qz") + a(P?--33PlPz*)+ b (3P12pz- ~~3)) K”‘=Ka + . . . 

a = - -& Re x3ooo, b = - & Im x3000, 
* 2P 

x3ooo = 2n 
s 

h&,(t)esikfdt 
0 

(2.19) 

Theorem 2.3. If x,“““#O, the equilibrium position is unstable (the stabilityquestion 

when xQOOO = 0 is resolved by Theorem 2.2). 

The theorem is proved by constructing the Chetaev function /ll/ 

I,' == -(Q,P, + QqPJK(“) (2.21) 

whose derivative relative to the equation with Hamiltonian (2.16), (2.19) is positive definite 

in the region V>O (an analogous function was first used by Chetaev when inverting the 
Lagrange-Dirichlet theorem). 

In the case 3), in the normal form (2.16) now 

Kc”) = Vz (91’ + Qz’) + Kcop) (PI, P2) 

K(l) = (PI* + P,2) [R (QJ', - QPI) i- C (91’ t- QZ2)l + K, + . . . 

Kcop) = A (PI2 + Pz2)* + a (PI4 - 6P1'P,2 + P,4) + 46 (P13P, i- PIP,“) 

In 

a = ‘/% Re xpooo, b = ‘/z Im XPOOO, xaoa, = Y& 
s 

g&o (t) e41kf dt 
0 

g,ooo* = ha,,,* + 3hzom*s,ooo* + hzool*suoo* 

(2.22) 

h* 4”“” = + L(h ““1” - h”“m + h”“oa) + i (- h”“s1 + hood1 

Theorem 2.4. If the form K(“P) is positive definite in pland P,, the equilibrium 

position is formally stable. In the remaining case (excepting the case of sign-positiveness, 

when the stability question is resolved by higher-order terms) instability obtains. 

The theorem's first assertion is proved in the same way as in Theorem 2.2. The instabil- 

ity is proved by using the Chetaev function (2.21). 

3. Let us now consider the case of prime elementary divisors of the matrix X (2n) - pE, 
with pl= pz# fl. At first (as in the preceding case) we describe briefly the linear normal- 

izing procedure for system (1.3). 
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Theorem 3.1. A real symplectic matrix N (t)continuously differentiable and k-period- 

ic in t exists such that the substitution (2.1) reduces the Hamiltonian Hz of system (1.3). 

to normal form 

where the numbers 

We write the 

and the arbitrary nonsingular matrix A satisfies the symplecticity condition (2.5) and the 

H,’ = ‘/,6& (q~” + PI”) + ‘/a&a (qs” + pt’*) 

i&. =*I are determined during the linear normalization. 

required matrix N(t)in form (2.3), where now 

(3.1) 

B=diag(ih,ih,--ih,--ih), c=__!= -A iJ% 
~2 It I& -All' '=ii(:' :,]I (3.2) 

periodicity condition (2.6). We note that now the matrix esnR is the diagonal normal form 

of matrix X (2n), i.e., A is composed of the eigenvectors of matrix X(2n). Once again we 

set A = LD and for the columns of matrix L we write relations analogous to (2.7) (the 

vectors lj must be linearly independent), 

X (2n)l, pl,, x (2n)lh-+s ,= plk+2 (h- 7 1, 2) (3.3) 

Then, having chosen Ik+z = iS& and having set 

(i.e., having satisfied the condition for N(t)to be real), we arrive at the problem of ascert- 

aining the structure of a skew-symmetric matrix F = LrJL. Analysis shows that 

where we can so choose the vector 1 1 

in (3.3) 1 that 1x3 = i& (11, Jil) # 0. 

(from the two linearly-independent vectors 11 and I, 
We write out the elements of matrix ATJA and we equate 

them to the elements of matrix J (the symplecticity condition). Solving the equations obtain- 

ed relative to the elements of matrix D, we obtain norming relations in which the signs of 

6, and 6? in the coefficients of normal form (3.1) are selected such that the subradical 

expressions (they are real) are positive. Collecting the results obtained, we finally obtain 

for the normalizing matrix N (t)the expression 

where rk and skare the real and imaginary partsofthe vectors Al = drll,A, = d,ll + d,l, which 

are the first columns of matrix A. This completes the proof of Theorem 3.1. 
We note that now, in contrast to the case of nonprime elementary divisors considered in 

Sect.2, the linear system with Hamiltonian (3.1) is stable, although even here it does not 

follow that the complete system should be stable (see below). To carry out the nonlinear 

normalization we pass to the complex variables (2.11) wherein the matrix d is determined by 

(3.2). In complex variables we obtain H,* = ih (ql*pl* + Qz*pz*), while the equation for deter- 

mining the ccefficients cf the generating function of the Deprit-Hori method and the coef- 

ficients ofthenew Hamiltonian takes the form of relation (2.13) in which the last two sum- 

mands on the left hand side are absent. Thus, analogously to formula (2.15) obtained for the 

case of nonprime elementary divisors, we now have 

(3.4) 

where the summation is over indices v1r vzr Pl, CL2 r -N 
(integer), and the coefficients 

such that :3:g v1 + 'v? + pL1 + p-2< m, v,v*g,lr: - 
xv,vMl, satisfy the relations 

xllllllylyl = i( vl+v~+Pl+P~~~~~v~+~~~~~~v~+~~~~" v_p,pz L 
analogous to relations (2.12). Passing in (3.4) to real polar variables (Pi (coordinate) and 

rk (momentum) by the formulas 

Qk* = if/rh-exp (i&(Pk). Ph.* = -&f/r, exp (-i&&k), (k = 1, 2) 

we obtain the final expression for the normal form of the Hamilton function 

Theorem 3.2. Let &6,> 0. If kh # N(k,N are integers, k = 3, . . ., m), then the equil- 
ibrium is stable when terms of upto order m, inclusive, are taken into account. 

Carrying out the normalization of the Hamiltonian up to terms of order m, we can be 
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convinced that the truncated system admits of a positive-definite integral r1 + rz -~ const. This 
proves the theorem. We note, in addition, that if the number h is irrational, then from this 

follows the formal stability of the equilibrium position. 

Now let &6,< 0 and 3h#N, 4i#N. The Hamiltonian (3.5), normalized up to fourth- 

order terms (in qr, pk) , takes a form analogous to the normal form in the autonomous problem 

151 
h' ; K(O) + Kc'), Kc') =m K, + . . (3.6) 

K(O) : -a202,,r12 - 2616,rl’~~r,‘~~ (azoll cos q - b,oll sin 9) - r1r2 (&fi2allll + 2~7~~~~ cos 2cp - 2b,,,, sin 2(p) - (3.1) 

26 6 1 ,rl’!T,“~z (a,,11 cos ‘p + b,,ll sin (P) - aOzo2 rx2, cp -z &(EI - &Y~, ~yIviLl,p. = ~vIv+,w~ -t &v.p,b? 

where the functions K,, . . . are &c-periodic in t and in the angular variables v1 and mz. 

Let us consider a function @((cp) = 9’K(“) IFlzriCT which is 2 - n periodic in one variable 'p = 

&(pr - 6,~ (here 616, < 0). 

Theorem 3.3. If form (3.7) is sign-definite in domain rl> 0, rz>@ for any cp, then 

the equilibrium position is formally stable. If Q)(((')f 0 when 0-G 'p< 2n, but form (3.7) is 

not sign-definite, then the equilibrium position is stable when terms of upto fourth order in 

the expansion of the Hamiltonian function (1.2) are taken into account. If functiona((cC)takes 

values of any sign (is sign-variable), then Liapunov-instability obtains. 

We first prove the assertion on instability, assuming that a value 'p* exists such that 

@(m*) = 0, but @’ (q*)# 0 (this restriction is unessential). Using the periodicity of @(q),we 

choose a number F such that the inequality a)'(cp)<O is fulfilled in the neighborhood 1 CP - 
cp*j<e. We consider the Chetaev function /3,5,8/ 

~'=[r~a-(rl-rrz)Z]sinY, Y=g((cp, +(I'~--(p* $~ E), 2<a(:i (3.8) 

As the region li > 0 we take the domain rxa- (rr -- r2)' > U, 1 cp~ -I- cp2 - (p* 1 < E. In this region, 

obviously, rl = r2 _I- firta/2, 1 p I< 1. For the derivative of function (3.8) by virtue of the 

equations of motion with Hamiltonian (3.6) we obtain 

at’ CL+1 
dt = r2 [G (I-fi*)d)(cp)cosY-a@'(cp)sinY +o(rY+‘) 

1 

This function is positive definite in region V>O /5,8/t whence on the basis of Chetaev 

theorem /ll/ we obtain the instability of the equilibrium position. 

TC prove the theorem's other assertion we note that the truncated system with Hamiltonian 

(3.7) has two integrals: K(“-m~ const and ri - rz mm: COIlst , and, consequently, admits of the 

integral G = (rl - rJ2 + lK(")P which is positive definite. Thus, on the basis of Liapunov 

theorem /l/ we obtain the stability of the complete system in the fourth order (if kh + N, 
where k = 3, . . ..m. then from this follows as well stability in the m-th order, while for an 

irrational h, formal stability). Now let function (3.7) be sign-definite in rl and r2 for 

any 'p. In the system we carry the normalization out to terms of infinite order. This 

signifies that function (3.6) does not depend explicitly on time and, consequently, is a 

formal integral. Since this integral is sign-definite, the equilibrium position is formally 

stable according to the definition in /lo/. We observe that this assertion of the theorem 

is valid also when 616,>0. The theorem is proved. 

The cases 3h=N and 4h=N for prime elementary divisors was not analyzed in detail. 

We note that this problem is analogous to the cases of simultaneous fulfillment of two 

resonance relations for multidimensional Hamiltonian systems the study of which is far from 
complete even in the simpler variants (see the survey /12/). Finally, all of the results 
described above carry over to the case cf a nonautonomous system with II+:! degrees of free- 

dom if it is assumed that its frequencies h,h,,...,h,+, are not connected by relations of para- 

metric resonance. 

The authors thank A.P. Markeev for attention to the work. 
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